skip to main content


Search for: All records

Creators/Authors contains: "Saunders, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Because of the extreme purity, lack of disorder, and complex order parameter, the first-order superfluid 3 He A–B transition is the leading model system for first order transitions in the early universe. Here we report on the path dependence of the supercooling of the A phase over a wide range of pressures below 29.3 bar at nearly zero magnetic field. The A phase can be cooled significantly below the thermodynamic A–B transition temperature. While the extent of supercooling is highly reproducible, it depends strongly upon the cooling trajectory: The metastability of the A phase is enhanced by transiting through regions where the A phase is more stable. We provide evidence that some of the additional supercooling is due to the elimination of B phase nucleation precursors formed upon passage through the superfluid transition. A greater understanding of the physics is essential before 3 He can be exploited to model transitions in the early universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Cystic fibrosis (CF) is characterized by chronic respiratory infections which progressively decrease lung function over time. Affected individuals experience episodes of intensified respiratory symptoms called pulmonary exacerbations (PEx), which in turn accelerate pulmonary function decline and decrease survival rate. An overarching challenge is that there is no standard classification for PEx, which results in treatments that are heterogeneous. Improving PEx classification and management is a significant research priority for people with CF. Previous studies have shown volatile organic compounds (VOCs) in exhaled breath can be used as biomarkers because they are products of metabolic pathways dysregulated by different diseases. To provide insights on PEx classification and other CF clinical factors, exhaled breath samples were collected from 18 subjects with CF, with some experiencing PEx and others serving as a baseline. Exhaled breath was collected in Tedlar bags during tidal breathing and cryotransferred to headspace vials for VOC analysis by solid phase microextraction coupled to gas chromatography–mass spectrometry. Statistical significance testing between quantitative and categorical clinical variables displayed percent-predicted forced expiratory volume in one second (FEV1pp) was decreased in subjects experiencing PEx. VOCs correlating with other clinical variables (body mass index, age, use of highly effective modulator treatment (HEMT), and the need for inhaled tobramycin) were also explored. Two volatile aldehydes (octanal and nonanal) were upregulated in patients not taking the HEMT. VOCs correlating to potential confounding variables were removed and then analyzed by regression for significant correlations with FEV1pp measurements. Interestingly, the VOC with the highest correlation with FEV1pp (3,7-dimethyldecane) also gave the lowestp-value when comparing subjects at baseline and during PEx. Other VOCs that were differentially expressed due to PEx that were identified in this study include durene, 2,4,4-trimethyl-1,3-pentanediol 1-isobutyrate and 5-methyltridecane. Receiver operator characteristic curves were developed and showed 3,7-dimethyldecane had higher ability to classify PEx (area under the curve (AUC) = 0.91) relative to FEV1pp values at collection (AUC = 0.83). However, normalized ΔFEV1pp values had the highest capability to distinguish PEx (AUC = 0.93). These results show that VOCs in exhaled breath may be a rich source of biomarkers for various clinical traits of CF, including PEx, that should be explored in larger sample cohorts and validation studies.

     
    more » « less
  3. null (Ed.)
    Abstract Superfluid 3 He, with unconventional spin-triplet p-wave pairing, provides a model system for topological superconductors, which have attracted significant interest through potential applications in topologically protected quantum computing. In topological insulators and quantum Hall systems, the surface/edge states, arising from bulk-surface correspondence and the momentum space topology of the band structure, are robust. Here we demonstrate that in topological superfluids and superconductors the surface Andreev bound states, which depend on the momentum space topology of the emergent order parameter, are fragile with respect to the details of surface scattering. We confine superfluid 3 He within a cavity of height D comparable to the Cooper pair diameter ξ 0 . We precisely determine the superfluid transition temperature T c and the suppression of the superfluid energy gap, for different scattering conditions tuned in situ, and compare to the predictions of quasiclassical theory. We discover that surface magnetic scattering leads to unexpectedly large suppression of T c , corresponding to an increased density of low energy bound states. 
    more » « less
  4. null (Ed.)
    Abstract The investigation of transport properties in normal liquid helium-3 and its topological superfluid phases provides insights into related phenomena in electron fluids, topological materials, and putative topological superconductors. It relies on the measurement of mass, heat, and spin currents, due to system neutrality. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, to enhance the relative contribution of surface excitations, and suppress hydrodynamic counterflow. Here we report on the thermal conduction of helium-3 in a 1.1  μ m high channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with interference of bulk and boundary scattering. In the superfluid, the thermal conductivity is only weakly temperature dependent, requiring detailed theoretical analysis. An anomalous thermal response is detected in the superfluid which we propose arises from the emission of a flux of surface excitations from the channel. 
    more » « less